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The Asymptotic Behavior of the Likelihood Ratio Statistic

for Testing a Shift in Mean in a Sequence of Independent Normal Variates

by
*
Yi-Ching Yao and Richard A. Davis
Colorado State University
ABSTRACT

Let xl, ceey Xn be an independent sequence of random variables such that
X5 oees X~ 14d N(u, 0?) and X pps +oes X v 11d NQu + 0, 02) where u, 6 * O,
02 and r are unknown parameters. The asymptotic properties of the likelihood
ratio in testing HO: r = n (no change point) vs. Hl: r < n are derived. It
is shown, using a result of Darling and Erd¥s, that the likelihood ratio,

converges in distribution to the double expo-

suitably normalized and under Ho’

nential extreme value distribution. The asymptotic operating characteristics
of the likelihood ratio test are studied and comparisons are made between the

likelihood ratio test and a Bayesian test.

Running head: Testing a shift in mean.
*
Partially supported by grants NSF DMS 8202335 and AFOSR F49620 82 C0009.

AMS 1980 subject classification. Primary 62F05; Secondary 62E20

Keywords and phrases. Change point, normalized Brownian bridge, Ornstein-
Uhlenbeck process, extreme value, asymptotics.
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1. Iantroduction
7 7-% . dacumar”

_Hh—considerﬂthe problem of testing a sequence of independent and normally
distributed random variables with common mean against alternatives involving a

shift in the mean at an unknown time point.. Specifically, let Xl,
- - A ot -«‘\ "//I

an observed independent sequence such that Xl, ooy Xr ~ iid N(u, 02) and Xr+

ey Xn be
1’
eres X v 1id N(u + 8, 0?) where u,  # 0 and r(1 < r < n) are unknown and o is
either known or unknown. We want to test HO: r =n vs,. le r < n. Chernoff and
Zacks (1964) derived, by assuming & > 0, a one-sided test statistic through a
Bayesian argument. Their results were generalized to the one-parameter exponential
family by Kander and Zacks (1966), and to two-sided test statistics by Gardner
(1969) and MacNeill (1974). The asymptotic operating characteristics of these
Bayesian tests were also studied by Gardnmer (1969) and MacNeill (1974). Sen and
Srivastava (1975) derived various likelihood ratio tests and compared them to
Bayesian procedures using computer simulations. Hawkins (1977) discussed
heuristically the asymptotic null distribution of the likelihood ratio test.
Unfortunately, his reasoning is not entirely correct (though the leading term is
of the right order).

The purpose of this paper is to study the asymptotic operating charac-

/Ac awtly) 5
teristics of the likelihood ratio test. In the next section, we derive, by in-

voking a result of Darling and Erdds (1956), the asymptotic null distribution of

the likelihood ratio test, which is related to the extreme value behavior of the
— - o<+l T

Ornstein-Uhlenbeck process./—In Section 3,-we—study the asymptotic operating

characteristics of the likelihood ratio tes

-

t and make comparisons between likeli-

—

hood ratio and Bayesian tests.

2. Asymptotic null distribution of the likelihood ratio test

Throughout this paper, we assume ¢ 18 known since the case of ¢ unknown




is asymptotically equivalent to that of ¢ known (see Remark 2.4 at the end of

this section). So without loss of generality we set o = 1.
Given a change in mean occurring between r and r + 1, the maximum likelihood
T _ n _ _
is proportional to exp{-%| J (X, ~X )2+ ] (X, - X")2|} where X_ denotes the
i T i T r
=1 impr+l
sample mean of the first r observations and i; the sample mean of the last n - r
observations. So the (generalized) minus log likelihood ratio of Ho vs. H, is

1
proportional to (see for example Sen and Srivastava, 1975)

n T n
(2.1) T2 = max [ X, -X)2- ) (x, -X)2 - X -i')z]
% leren-1 121 t 121 rox in+1 tox
2
(f’.z _r f.e)
_  max \ /n 1 ;m
l<r<n<1 r r
- = @a-2)
% _x Gy
max yn ™
l<r<n-1 ,,r r\\x :
= da -y

where s = X1 + ... + Xr. Suppose {W(t); O < t < =} 1s a standard Brownian

motion. Since under H_, {(Sr -ru//n; 1 <r <n} ) {w(ﬁ); 1<r <n}, we

have
S )
3
(2.2) T = max L.-.Xa /Jida-Ly
n l<r<n-1 |v/n n /E"// n n

max lW(e) - ew(D)]/(ea-t)*

nt=1l,...,n-1

1

- max W_(0)] /(e (1-e))"
nt=1,...,n-1

N

where = means "equal in distribution" and Uo(t) = W(t) - tW(l), (i.e. Brownian

bridge). Throughout, we shall use the convention that max =  @max .
ﬂt'l, s e ’n-l lf_ntf_n—l




Theorem 2,1 Under Ho,

-1 % -x
1lim p(a (T -b ) <x) =exp(-2n “e "), = < x <=
oo n n n’ — i
-1 -1

=" .
where a = (2 lnz n) 4, bn a, + 2 a lna n and an is the k-th iterated

logarithm.
We need the following lemmas to prove the theorenm.

Lemma 2.2 (Theorem 2 of Darling and Erdbts, 1956)

1lim P(a—l( max LILON (e b ) <x)= exp(—ﬂ-% e_x),—w < X < ™,
no k=l,...,n n

Lemma 2.3
lwo(t)l

max [w(e)|

max
1<nt<[n/¢n n] vt(1-t) 1<nt<[n/2n n] e - op(an)

Proof. For n large and t < 1/¢n n, we have

W) - ew()| _ Jw()]
/t(1-t) Vt

W(t) - tW(l) _ W(t)
Yt (1-t) t

+ /_L w(l)
1-t

ejw(e)| + 2Ve|w()|

<

LIC e S
£ Y1-t

1A

(an n) E(w(e) | + 2|w D).

I A

Therefore,

W ()]
Ol e i

max
l<nt<[n/fn n] Y€(1-t)  l<nt<(n/fn n) v/t

- | j

Iwo(t)l _ we |

< max
l<nt<{n/in n] [/t(1-t) /t
< @am™  max (Wee) ] + 2w )

1<nt<[n/fn n]

- Op((in n)—%). {1

.......




Lemma 2.4

w (e)]
°©— -0 ((tn, M%)

max f—
[(n/%n nl<nt<[n/2] /t(1-t)

Proof. By the law of the iterated logarithm, for t small enough,
[w(e)] < 2/2¢ tn, £F, W.P.1.

It follows that as s + O+,

max [w(t)l_ -1.%
= Op((Zn2 8 1))

te[s,1/2] .
so that
pax LRGN max ol max T
[n/tn nlent<ln/2] e = [0/t nlent<[n/2] o [n/tn nl<nt<[n/2]\1-¢ WD
- Y
0 (Gng m)?) +0 (). a
Lemma 2.5
-1
lim P(a_"( max lwee) | % -x
e l<nt<[n/%n nj _-/E— =b) <x) =exp(-r e 7).
Proof. Since Mo, L [plnad D W) Ly | n/ea nl),
/E n n /E

it follows from Lemma 2.2 that

LIGIES

. VR
P( max & /in nl* + b[n/ln n]) + exp(-7 ‘e 7).

1<t<[n/fn n] Y/t
But,

a[n/ln ] =a + o(an) and b[n/ln n] = bn + o(an)

i

which establishes the lemma by the convergence to types result.

Lemma 2.6 | |
W (t)
max o - IESE)I =0 (a).
l<nt<[n/2) /t(1-t)  1l<nt<[n/enn] Vt P 1

Proof. From Lemmas 2.3 and 2.5, we have

AL e
ettt e e e
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RSy

(2 £n2 n)-k max 2 =, 4n probability.
l<nt<[n/2n n] Ye(1-t)
This property and Lemma 2.4 together imply
lw (0] W o(t)]
P( max 2 > max l-°———) 0
[(n/2n n)<nt<[n/2] vt (1-t) l<nt<[n/fn n] vt (1-t)
Now, applying Lemma 2.3 completes the proof. i
Lemma 2.7 | |
W, (t) e -
max o - max IM)I=O (a ).
1<n(1-t)<[n/2] Ye(1-t) 1<a(l-t)<[n/tn n] V/I-t p 0

Proof. This follows from Lemma 2.6 and the symmetry of the Brownian bridge

wo(t) with respect to t = %; 1i.e. {Wo(t); 0<t<1] 2 {Wo(l-t); 0 <tc< 1}, D

Proof of Theorem 2.1. We have

)|

P(T_<a x+b |H) =P( max <a x+b)

n n noe I<nt<n-1 vt(1-t) n
[w () [w ()]
= P( max 2 <a x+b, 2

1<nt<[n/2] /e(1-t) = " n

max <a x+b)
len(l~t)<[n/2)VE(@-t) ~ * P

which by Lemmas 2.6 and 2.7 is equal to

<a x+b, max lHSEl:Hil)I

P( max 'Ei£l|
" 1<n(1-t)<[n/tn n] VIt

<a x + bn) +0(1)
l<nt<[n/tn n] /t

hd exp(-Zw_% e ).

by Lemma 2.5 and the independence of the increments of Brownian motion. D
Remark 2.1. From extreme value theory, it is known that the extreme value of

a Gaussian sequence converges to its limit distribution very slowly. Therefore,
one must be careful in using the limit distribution as an approximation for

finite n.

Remark 2.2. Hawkins (1977) approximated the asymptotic null distribution by

that of the maximum of &n n consecutive observations from a weakly dependent

stationary Gaussian sequence. Appealing to a result of Berman (1964), this




EY

R Y
e e

™o

........

statistic has the same limit distribution as the maximum of %n n observations

from an iid N(0, 1) sequence. However, since W(t)/Vt = X(% 2n t) where X(t) is

the Ornstein-Uhlenbeck process, the above argument shows that the null distribution
1s approximated by the extreme value (in continuous time) of the Ornstein-Uhlenbeck
process. The normalizing constants for the maximum of this process differ from
those of the maximum from an iid N(0, 1) sequence (cf. Leadbetter, Lindgren and
Rootzen, 1983) which accounts for the discrepancy between the normalizing constants
in Theorem 2.1 and those suggested by Hawkins.

Remark 2.3. The statistic Tn was derived from the two-sided likelihood ratio

(i.e. 6 could be either positive or negative). If it is given that 6 < 0 (i.e.
downward shift in mean), a statistic derived from the one-sided likelihood ratio

is (cf. (2.5) of Sen and Srivastava, 1975)

5.chh
) n
2.3) Tr'l = max\O, max u .
1<r<n-1 T r
— (;(1 - n))

Applying Theorem 1 of Darling and Erdds (1956) and following the pattern of

the proof of Theorem 2.1, it can be shown that under Ho,

(2.4) lim P(a;I(T' b)) <x) = exp(-1"% e¥), = < x < =,

n - s
n-+e

Remark 2.4. When the common variance 02 is unknown, the likelihood ratio sta-

tistic of Ho vs. H, becomes

1

62 \n/2 n oi n/2
min (—;- ) - min =
1<r<n-1 \ g2 l<r<n-1 n g2
~ = n =t n

1 ~-2) 2 = 2
= {1 - ;-[ max o ) X, - X))

l<r<n-1 0 (4=
n/2
f( ' ? (x if]
- X -X - -
1,1 1 T fert1 ¥ T
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A, -1 I -2 n - 2_
where oi = n l[ ¥ Xy - X) + ) (X, - x;) J. So a test statistic is

i=1 i=r+l1
2 -2 R - 2 r — 2 n - 2
T"=> max o [] (X -X) - } X ~-X) - ] & -X%X]
" o2 Ll =1 0% gmr T gmm T

where a large value of T; indicates significance. The random variable

-2 I — 2 r — 2 n 2
. mx o [) (X, -X) - } (X, -X) - ] (X -X') ] has the same null
i n i r i x
l<r<n-1 i=1 i=1 i=r+]1

distribution as the likelihood ratio statistic under the condition of o being

known equal to 1. We also have, under Ho,

2 . 1+ OP(n-%)

Q >|Q

s

Therefore, the likelihood ratio statistic for both cases of ¢ known and un-

known has the same asymptotic null distributionm.

3. Operating characteristics of the likelihood ratio test {Iq}

We shall compute the local powers of Tn and compare the performance of Tn

n-1rn-1 — 72
and the Bayesian statistic U E-l~ 2 Z X - X))}, (see (1.3) of Gardner
n n? r=1Lli=r i+l n

(1969), assuming the uniform prior distribution on the location of the change

point).
Let a be a given significance level. From Theorem 2.1, lim P(Tn > cn) = q :
ne L
) where S
-1 % -1 T
(3.1) < bn a_ gnl2 ~ v?* en(l - o) 7 J. ce T
/ L

We consider the altermative H(to, n, n) that there is a change between [n to] RN

and (n tOJ + 1 and the amount of (positive) shift in mean is
(3.2) o=(nt (1- to))“* (2 tny 0% 4 n + 0(1))

wvhere to and n are two constants with 0 < to < 1. (The results below are

exactly the same for negative shifts.)

................




Theorem 3.1.

lim P(T_ > cnIH(to. n, n)) =a+oMn(1 - a)

n-re
where $(°) is the standard normal cdf.

Proof of Theorem 3.1.

Again, let Wo(t) = W(t) - tW(1l) be a Brownian bridge. Under H(to, n, n),

S S
(3.3) T = wmax |—= - E—“‘ S EQ - s
n l<r<n-1 ‘v/n * /a n n
2 omax W (0) - £_(0)]/(e-t)"
l<nt<n-1
where
(3.4) £ (t) = ot g (1 -[nt 1/n)t if nt < [n t ],
[nt]
= n;’ ) o (1-t) if nt > [n t°].
Denote by En . (1 < 2 < 6) the event that
max X
{teDn . W () - £ ()| /(e2-t))* > c }
where
D = {k/n: 1 < k < [n/en n]} -
n,l - - T
D, = fk/min - [n/tanlck<n-1) J
)
D, 5 = {k/n: [n/tn 0] < k < [n £ ] - [n(tnp)/@n, n)*]) i
Dn,k = {k/n: [n t°] + [n(£n3n)/(ln2 n)li] <k <n~ [n/¢tn n]} 1
D, 5 = {k/n: [n t ] - [aCtnm)/(tn, ™) < k < (n £ 1) S
]
Pa,6 ~ {k/n: nt J<k<lned+ [n(tng)/(n, n);’]}. ,‘-':
Obviously, R
]
P(T_ > c [H(t_, n, 0)) = P( max |V (t) - £ (0)|/(e-t))% > c)) -]
n o ° lf_nt_f_n—ll ° n I n ‘




We now break up the proof into a few lemmas.

Lemma 3.2

P(E AY max lHSEll > cn}) = o(1)

™1 Yeed V£
n,l

P(E_ , Af max ey - wa| | cn‘) = o(1).

. »2 teD /1-t
n,2

(A denotes symmetric difference.)

Proof. We only prove the first equation. The second one can be done similarly.

For 1 < nt < [n/%n n] and n large, we have

[£ (t)] £ (e)] (ot ]
B 2t . .omfoa- —2) K&
Yt (1-t) vt
and using (3.2), this bound is 0((2n2n /&n n)%) = O(an) uniformly in téDn 1
So, ’
W ()] W () - £ (0)]
max - max = Op(an)
teDn’l Yt (1-t) teDn,l Yt (1-t)
which together with Lemmas 2.3 and 2.5 completes the proof. []
Lemma 3.3
P(En,l) = o(1), ¢ = 3,4.
Proof. We only consider the case & = 3. From Lemma 2.4,
W _(t)]
max ——— =0 ((2n3n)!5).
teD ., /e(l-t) P
Also for n large,
£ (t)]
max —2—— « max a®6(l- [nt 1/n)(t/(1-£))"
teD, . /t(1-t) teD_ , °
n &n, n
- (nk 8)(1 - [nt ]/n)(t/(l—t))';5 at t = t* = n—l([n t ] - [————;1—- ])
o o b
(an n)

=t “(ln3n)/(2n2n)% + 0(n )

- e s e

. ., . et
o . e
IR NP W U T PP




= [e (- )173(2 tn, 7 + 0 + 0(1) (L - £ + 0™ 1)) (e4/(1-e%)) ®
= 2 any W) - 2731 + 0(1)) Gag/(e_(1-t ) -

Therefore, the lemma follows from the inequality

W (e) - £ (0)]

X b
max 0 ((tn, n)*) + (2 4n, n)
ted_ Ye(1-t) % 3 2
- 27 4 o(1)Xen m)/ (t_(1-t ). il
Lemma 3.4
W (t)
P(E_ , AM(t (1-t )4 nfg- 29  ,c})m=o0(1), 8 =5, 6.
n, o o /E;TI:E;) . n

Proof. Once again we only supply the proof for one case £ = 5. Observe that

£ (t)
(3.5) max n =nfo((l-t)t)f+ 0((tn, n)%/n) v (2 in, )
ted_ o Ye(i-t) oo

and since Wo(t) is W.P.1 continuous

W (t) W (t)
(3.6) max { 0 - o 9
tenn’5 vVt (1-t) /to(l-to)

= op(l).

fn(t) - wo(t)

It follows that R = max is eventually equal to
T teD 5 Yt (1-t)
W -t
W (t) -
max 0 n . Set Z = (t:o(l—to));’n!i 8 - wo(to) (to(l—to)) !’. It thus
teD o Yt (1-t) n

suffices to show that for every € > O,

(3.7) P(Izn -Rnl >€ +0

and

(3.8) l1im limsup P(c_ -~ €< Z_ < c_+ €) = 0.
€30 oo n —n n

We have




— "y D
Tr;r\.._.“‘.‘.‘..._. P ———— P e e g—=—yY 0wy~ =+ = = =

£ () W (t) i
max 2 - max 2 -Z <R -2 ]
ted_ . /e(1-t) ted ¢ Ve(l-©) rmmom f
» ’ i , J

£ (t) W (t) L4

< max - min

t‘Dn,S Yt(1-t) téDn

5 /t(1-t) n’

By (3.5) and (3.6) the two outside terms of this inequality are both op(l) +
0((1n2n)%/n) = op(l) which proves (3.7). As for (3.8), we have c, - (to(l-to))%nke =

-~ n+ o(l) so that

W ()
1lim limsup P(cn -eiznf_cn+ €) = 1lim P( n -65_—L—°—*— <n + €
€40 e €-0 Jto(l-to)

= 0. 1]

Continuation of the proof of Theorem 3.1: First it is a straightforward

calculation to show

3 % i}
(3.9) P({(t° (l—to)) n* o - wo(to)/(to(l—to)) > cn} A An) o(l)
where i - 3
VY [W(to) - W((&n n) °) - to(W(l—(in n) °) - W((&n n) 9)]
A = {(to(l—to)) n‘e - I > cn}.
(e (1-t )
By (3.9), Lemmas 2.5, 3.2-3.4, and the independence of the Brownian increments,
we have
6 DI
P(T > c [H(t , n, ) = P(lgl E e PR
o
- e
= P({ max W), ¢ JU{ max Juge) - W) >c JUA) +0Q) L]
teD 3 n tep V1=t n n BN
n,l n,2 RO
+a + 0(n)(1-a). 0 e {
-p 0zl n-l _ .
MacNeill (1971) studied the asymptotic behavior of U = n 2 ( z (X, ..-X ))2. -
n r=1 i=r i+l 'n _-q
We state his results under Ho and under the alternative H'(to, ¥, n) that there is a -.'-vi

%

change between [n to] and [n to] + 1 and the amount of shift in mean is ¢ n °.
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3 B <
. Lemma 3.5 ]
. D 1 i b
1) Under H , U = [ w2(t)dt -y
- °©° mn o 0 .
2 (11) Under H'(t , ¥, n), N
z ° S
b~ Tl 2y
1
»
h v 2[ (W_(t) + h(t))2dt ‘
. ° °
S where h(t) = ¢ to t 0<t<1l- to
3 - 4
t =¥ (1-t )(Q-t), 1-t <tc<l > |
¢ We now compare the two tests relative to two sequences of alternatives both %
of which are approaching Ho (in some sense). For the first comparison, t, is . ‘
»

fixed and a sequence of shifts w(t s Q, B)n-;s converging to 0 is specified so
that the sequence of tests {U } has asymptotic significance a and power B > a. R
In other words, if c(a) 1is such that P(f Wz(t)dt > c{a)) =a, then ¢ = ¢(t , a, 8)

is chosen so that P(f1 (wo(t) + h(t))zd: > c(a)) = B. Then the sample size n' = n’(n) gﬂ~‘
o

required in order for the likelihood ratio test to have asymptotic significance a

and power 8 w.r.t. the sequence of shifts w(to, a, B)n“;s is found by solving o

gn fn n grows rather slowly).

' to(l—to))-!i((z tn, 0 41+ o(D)) = e, o B)n" (cf. (3.2)) where '
n = n(a, B) satisfies a + ¢(n)(1-a) = B. It is easily seen that n' should grow ici
like (2n in, n)/(w2(:o, a, 8)t _(1-t )). This suggests defining the analogue of -6$;
Pitman efficiency (depending on t» O B) of the sequence of tests {Tn} w.r.t. :;f{
{Un} by n/n' ~ wZ(to, a, B)to(l—to)/(Z n, n). Thus for the sequence of alternatives iii%
specified above, {Un} is more efficient than {Tn} vhen n 1is very large (although ) i;;f

}

For the second comparison, we consider the sequence of alternatives {H

(n)
where the amount of shift 8 is now held constant but t, - n-l[n - nl-YJ %1-n", _i
}$ < y <1, 18 approaching 1. Then for the alternatives {H(n)} the sequence of tests SRR

{Tn} is more powerful than {Un} since
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o
(3.10) P(U_ > c(u)[H(n)) +a
while - )
.-.
(3.1 P(T > c [H ) > L, e
where < is given by (3.1). ?ENEQ
The proof of these two results is as follows: Let Y; be iid N(0, 1). Then if::;l:
( :
-1/n-1 n-1/n-1
. 2" =\2? -2 = . 2 {
R B |
-2 nir(nil _ -2 nil nil _ nil . . ‘¢
=n (64 - Y))2 - 2n ( (Y - Y))( g (i+1)> R
r=1 \i=r it r=l\ i=r 1+1 i=r ©° . &
_o 0=1l/mn-1 2 |
) ( T g (1+1) |
r=1\ 1=y © ° i
}
where ‘ 1
‘ -(1~[n - n¥"¥3/n)6 4£ 1 < [n - n¥7Y3. |
g (1) = _ - o
n ¢ ([n - ul Yi/n)e 1f 1 > [n - nl'Y]- :ffi;f‘f
-2 n-l n-l " D 1 S :
Since n ) ( ) (Yyq - Y)f = [ wi(t)dt, it suffices to show
r=1"i=r o °
-2 n~1 /n-1
(3.12) n <y ( ) gn(1+1€f = o(1).
r=]1 \ i=r
We have for % < y < 1,
_o n=1/n-1 2 _ - )
n? ) < ! o8 (i+1)) <n 2 n{n 1(n - [n - nl_YJ)nlel '
r=1\ i=r " -

+ (n-[n-~ nl_Y])Iel}2

o Y2al 6] + 0(2))2

IA

+0asn+ow

which establishes (3.12) and thus proves (3.10).

As for (3.11), we have R




X IW(e ) - £ (D] W ()

(1-v) 4(1-v) .
T = -9n + o(n )I -
n— li BN
(e, (1-t ) (e (1=t ) -
- Ieln;i(l-y) + Op(ﬂk(l-Y)),

whence
(T > cnlu(n)) + 1,

Note that (3.11) remains true if to =1-n" for any v, 0 <y < 1.

Remark 3.1. The simulation results of Sen and Srivastava (1975) tend to support

the above conclusions even for moderate sample sizes. They show that for 20 < n < 100,
{Tn} is less powerful than {Un} when t, is close to % and more powerful when to is
close to 0 or 1. When n is moderately large, the factor wz(to, a, B)to(l-to) in

the above efficiency calculation may dominate the 2 lnz n piece. Based on Sen

and Srivastava's simulation results, it seems likely that for fixed o and 8,

wz(:o, a, B)to(l—to) increases as Ito - % + %, Actually when t, % 1, then h(t) =
01 - to) and w(to, a, B) is of the order (1 - to)—l so that the factor W(to, a, B)t°
(1- to) is of the order (1 - to)-l. This argument gives a heuristic explanation

as to why the sequence of tests {Tn} is more powerful than {Un} when (1 - to) (or

to) converges to zero sufficiently fast.
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